Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst
نویسندگان
چکیده
Intercellular communication is essential to coordinate the behaviour of individual cells during organismal development. The preimplantation mammalian embryo is a paradigm of tissue self-organization and regulative development; however, the cellular basis of these regulative abilities has not been established. Here we use a quantitative image analysis pipeline to undertake a high-resolution, single-cell level analysis of lineage specification in the inner cell mass (ICM) of the mouse blastocyst. We show that a consistent ratio of epiblast and primitive endoderm lineages is achieved through incremental allocation of cells from a common progenitor pool, and that the lineage composition of the ICM is conserved regardless of its size. Furthermore, timed modulation of the FGF-MAPK pathway shows that individual progenitors commit to either fate asynchronously during blastocyst development. These data indicate that such incremental lineage allocation provides the basis for a tissue size control mechanism that ensures the generation of lineages of appropriate size.
منابع مشابه
Formation of distinct cell types in the mouse blastocyst.
Early development of the mouse comprises a sequence of cell fate decisions in which cells are guided along a pathway of restricted potential and increasing specialisation. The first choice faced by cells of the embryo is whether to become trophectoderm (TE) or inner cell mass (ICM); TE is an extra-embryonic tissue which will form the embryonic portion of the placenta, whilst ICM gives rise to c...
متن کاملMaking the Mouse Blastocyst: Past, Present, and Future.
The study of the preimplantation mouse embryo has progressed over the past 50 years from descriptive biology through experimental embryology to molecular biology and genetics. Along the way, the molecular pathways that lead to the establishment of the three cell lineages of the blastocyst have become more clearly understood but the fundamental questions of lineage commitment remain the same as ...
متن کاملThe Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo
Mammalian development begins with segregation of the extra-embryonic trophectoderm from the embryonic lineage in the blastocyst. While cell polarity and adhesion play key roles, the decisive cue driving this lineage segregation remains elusive. Here, to study symmetry breaking, we use a reduced system in which isolated blastomeres recapitulate the first lineage segregation. We find that in the ...
متن کاملMouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential
Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo de...
متن کاملRole of mechanical factors in fate decisions of stem cells.
Stem cells derived from adult tissues or from the inner cell mass of blastocyst-stage embryos can self-renew in culture and have the remarkable potential to undergo lineage-specific differentiation. Extensive studies have been devoted to achieving a better understanding of the soluble factors and the mechanism(s) by which they regulate the fate decisions of these cells, but it is only recently ...
متن کامل